Diversity and evolution of Hunter−Schreger Band configuration in tooth enamel of perissodactyl mammals

نویسندگان

  • WIGHART VON KOENIGSWALD
  • LUKE T. HOLBROOK
  • KENNETH D. ROSE
چکیده

Four different Hunter−Schreger Band (HSB) configurations were observed in the teeth of fossil and extant Perissodactyla. This variability exceeds that observed in Artiodactyla or Proboscidea. The four HSB configurations represent two different evolutionary pathways. Transverse HSB found in many mammalian taxa outside the Perissodactyla represents the most primitive HSB configuration. It occurs in several primitive perissodactyl families and is retained in Palaeotheriidae and ex− tant Equidae. Curved HSB evolved from transverse HSB and occurs in Tapiridae, Helaletidae, and Lophiodontidae, as well as in Ancylopoda and Titanotheriomorpha. This likely indicates independent evolution of curved HSB in two or more lin− eages, but the number of instances of parallelism of this configuration is obscured by uncertainty in the relationships among these taxa and by a lack of data for some important basal taxa. A second evolutionary pathway leads from transverse HSB via compound HSB to vertical HSB. Compound HSB were detected in Hyrachyidae, Deperetellidae, and the early rhinocerotid Uintaceras. Vertical HSB configuration characterizes the molar dentition of other Rhinocerotidae, Hyra− codontidae, Indricotheriidae, and Amynodontidae. Often, the incisors of rhinocerotids retain traces of compound HSB. Thus the HSB configuration reflects phylogenetic relationships to some degree. The selective value of the modified HSB configu− rations is interpreted functionally as a mechanism to reduce abrasion during mastication, assuming that the perpendicular in− tersection of prisms with the actual grinding surfaces resists wear better than prisms running parallel to the occlusal surface.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Observations of Hunter-Schreger bands.

DOURING the process of studying the physical damage and traumatic effects of various instruments on tooth structure, it became apparent that some consideration should be given to the Hunter-Schreger band formation as it exists in enamel structure. When examined by reflected light, these bands appear as alternating light and dark areas in the enamel portion of a longitudinal groundtooth section,...

متن کامل

Enamel Ultrastructure in Fossil Cetaceans (Cetacea: Archaeoceti and Odontoceti)

The transition from terrestrial ancestry to a fully pelagic life profoundly altered the body systems of cetaceans, with extreme morphological changes in the skull and feeding apparatus. The Oligocene Epoch was a crucial time in the evolution of cetaceans when the ancestors of modern whales and dolphins (Neoceti) underwent major diversification, but details of dental structure and evolution are ...

متن کامل

Simulated and measured optical coherence tomography images of human enamel.

Optical coherence tomography images of human enamel were simulated and compared to measured images. A Monte Carlo code was implemented, which considered the microstructure of enamel. The prisms, the main scattering structures of the enamel, were described by oscillating cylinders whose scattering functions were obtained by solutions of Maxwell's equations. The essential features of the measured...

متن کامل

Comparative studies between mice molars and incisors are required to draw an overview of enamel structural complexity

In the field of dentistry, the murine incisor has long been considered as an outstanding model to study amelogenesis. However, it clearly appears that enamel from wild type mouse incisors and molars presents several structural differences. In incisor, exclusively radial enamel is observed. In molars, enamel displays a high level of complexity since the inner part is lamellar whereas the outer e...

متن کامل

Influence of structural hierarchy on the fracture behaviour of tooth enamel.

Tooth enamel has the critical role of enabling the mastication of food and also of protecting the underlying vital dentin and pulp structure. Unlike most vital tissue, enamel has no ability to repair or remodel and as such has had to develop robust damage tolerance to withstand contact fatigue events throughout the lifetime of a species. To achieve such behaviour, enamel has evolved a complex h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011